
NASA-CR-200578

Annual Progress Report

NASA Grant NAG 2-893

Formal Support for High Assurance Systems

Principal Investigator: Fred B. Schneider

Department of Computer Science
Cornell University

Ithaca, New York 14853

January 23, 1996

1. Introduction

Progress was made over the past year in our investigations regarding programming log-

ics, paradigms, and protocols for implementing fault-tolerant and distributed systems. Some

of the work in formal logics was foundational, with an eye towards developing a predicate

logic that is convenient and flexible; other of the work concerned the development proof

rules for reasoning about causally-ordered message delivery, a communications service that

underlies many of today's distributed-systems toolkits. Our paradigms and protocols work

has led to a new and optimal algorithm for property detection and an implementation of

hypervisor-based fault-tolerance.

2. Equational Propositional Logic

David Gries and I have developed an equational predicate logic, called E. We are pri-

marily interested in the use of the logic; the equational style makes it possible to develop and

present calculations in a rigorous manner, without complexity and detail overwhelming (in

contrast to other proof styles). Logic E is the basis for a sophomore-level discrete mathemat-

ics textbook we wrote. That text is now being used at 40 or so departments, suggesting that

the text's authors are not the only ones who find the approach attractive. The text's theme is

that logic can be a tool rather than simply an object of study.

Two open issues regarding E were pursued over the past year. First, we proved that the

equational propositional logic underlying E is sound and complete [1]. Second, in [7], we

explored the treatment of undefined expressions and partial functions. Partial functions are

f



ubiquitous in programming--some basic mathematical operations are partial (e.g. division),

some basic programming operations are partial (e.g. array subscripting), and many functions

that arise through recursive definitions are partial. Therefore, a logic for reasoning about

programs must handle partial functions. The approach we embrace is to regard all variables,

terms, and predicates as being total, but in some cases underspecified.

3. Causally-Ordered Message Delivery

Causally-ordered delivery can be understood as a generalization of FIFO ordering.

With both, a message is delivered only after all messages on which it may depend. With

FIFO ordering, this guarantee applies only to messages having the same sender; with causal

ordering, this guarantee applies to messages sent by any process. In [3], we give a Hoare-

style proof system for causally-ordered delivery and use the logic to verify an asynchronous

variant of the distributed termination detection algorithm developed by Dijkstra, Feijen, and

van Gasteren.

Our proof system is similar in style to the satisfaction-based logics that have been pro-

posed for asynchronous and synchronous message-passing. Our logic is interesting because

reasoning about message-passing primitives for causally-ordered delivery involves a global

property, the system-wide causality relation, which defines what messages are deliverable.

We thus demonstrate that substantially new methods are not required when message-delivery

semantics depends on global information. Others had suggested that new methods would be

required for this case.

4. Distributed Property Detection

Execution of a distributed system can be modeled as a sequence of events in their order

of occurrence. Such a sequence uniquely determines the global states through which the sys-

tem has passed. Unfortunately, in an asynchronous distributed system, no process can deter-

mine the order in which events on different processors actually occur. Therefore, no process

can determine the sequence of global states through which the system passed. This leads to

an obvious difficulty for detecting whether a global state predicate held.

In [5], we present a new algorithm for detecting whether a particular execution of an

asynchronous distributed system satisfies poss • (read "possibly _") meaning the system

could have passed through a global state satisfying _. The algorithms allows • to be any

global state predicate and is optimal when • has a certain structure. We also give an off-line

algorithm for detecting poss _, based on Strassen's scheme for fast matrix multiplication.

5. Hypervisor-based Fault-tolerance

Software is now running that implements a new approach for making a computer pro-

cessor fault-tolerant [9]. We built and augmented the functionality of a virtual-machine

monitor (hypervisor). By augmenting a hypervisor, fault-tolerance was achieved without

modifying the hardware, the operating system, or any application code.

-1-



Our protocolscontrol two replicasof a processor and ensure that the sequence of

instructions executed by two virtual machines running on different physical processors are

identical. The protocols also coordinate I/O issued by these virtual machines so that the

environment---disks, networks, etc--is unaware of the replicated processors and instruction

streams.

Use of a hypervisor to implement replica coordination is attractive for pragmatic rea-

sons. When replica coordination is implemented in a hypervisor, the functionality instantly

becomes available to all hardware realizations of the given instruction-set architecture,

including realizations that did not exist when the hypervisor was written. Second, when

replica coordination is implemented in a hypervisor, a single implementation suffices for

every operating system that executes on that instruction-set architecture. Finally, by imple-

menting replica coordination in a hypervisor, applications programmers are freed from this

task.

Our prototype implements a fault-tolerant Hewlett Packard PA-RISC processor running

the HP-UX operating system. We support a single SCSI disk device and an X-Windows

console. Performance experiments and modeling indicate that only a modest performance

degradation results from our replication management protocols.

6. Interactions with ARPA and NASA

(1) NASA/Langley currently funds an effort at ORA Corp. to help Union Switch and

Signal Company (USS) employ formal methods in developing next-generation rail-

road switching equipment. I continue to help out. One task is to verify that a new

train-control scheme, so-called "moving block" track occupancy rules, cannot lead to

collisions. A second task is to study the correctness of the USS software to translate

between a description of a railroad track system and the control programs that set

switches and signals.

(2) One of ARPA's four ISAT studies this past year dealt with Defensive Information

Warfare. I was a member of the study team. The concern is how we might protect

the national infrastructure--which is increasingly dependent on distributed

computing--from accidental failures and malicious intrusions. The study dealt with

technology for implementing fault-tolerance and security.

7. Reports and Publications

(1) Equational propositional logic. Information Processing Letters 53,3 (February

1995), 145-152. With David Gries.

(2) Operating system support for mobile agents. Proc. Fifth Workshop on Hot Topics in

Operating Systems HOTOS-V (Orcas Island, Washington, May 1995), 42-45. With

Dag Johansen and Robbert van Renesse.

(3) Verifying programs that use causally-ordered message-passing. Science of Computer

Programming 24,2 (1995), 105-128. With Scott Stoller.

-2-



(4)

(5)

(6)

(7)

(8)

(9)

A new approach to discrete teaching mathematics. Primus V,2 (June 1995), 113-

138. With David Gries.

Faster possibility detection by combining two approaches. Proc. 9th International

Workshop, WDAG '95, (Le Mont-Saint-Michel, France, Sept. 1995) Lecture Notes in

Computer Science, Volume 972, Springer-Verlag, New York, 1995, 318-332. With

Scott Stoller.

Teaching math more effectively, through the design of calculational proofs. The

Mathematical Monthly (October 1995), 691-697. With David Gries.

Avoiding the undefined by underspecification. Computer Science Today Recent

Trends and Developments (Jan van Leeuwen, ed). Lecture Notes in Computer Sci-

ence, Vol. 1000, Spring-Verlag, 1995, 366-373. With David Gries

Avoiding AAS Mistakes. Proceedings of the Air Traffic Management Workshop

(eds. L. Tobais, M. Tashker, A. Boyle), NASA Conference Publication 10151,

NASA Ames Research Center, Feb, 1995, 133-149.

Hypervisor-based Fault Tolerance. Proceedings of the Fifteenth ACM Symposium on

Operating Systems Principles, Operating Systems Review 29, 5 (Copper Mountain

Resort, Colorado, Dec. 1995), 1-11. With T. Bressoud.

-3-



NASA Grant NAG 2-893

"Formal Support for High Assurance Systems"

Principal Investigator: Fred B. Schneider

Research Plans: 1996

o Develop methods using standard data-flow analysis techniques to determine whether the
output of a system changes in response to certain classes of failures. Implement a
prototype tool based on those analysis techniques and having a graphical front-end for use
with systems constructed from TACOMA agents.

o Develop protocols for implementing active replication in a system of TACOMA agents.
Define language constructs so a TACOMA programmer can exploit active replication
without coding it directly.

o Axiomatize Dijkstra's "everywhere" operator for equational predicate logic E. Prove
completeness of the axiomatization and relate it to standard modal logics $4 and $5.

o Assist in creating TLA specifications for the ARPA-funded HORUS system. Determine
methods for programmers to view these specifications using a hypertext representation.
Create ways that the specifications can be employed as part of an intelligent "link editor" to
allow synthesis of custom HORUS stacks.


